Recherche & collaboration
Qu’est-ce qui nous rend unique ?
SuperGrid Institute doit son succès aux personnes qui composent nos différents départements de recherche. Nos équipes viennent d’horizons divers, tant industriels qu’universitaires, et la richesse de leur expérience et de leurs compétences rend l’Institut unique.
Chaque personne apporte une expertise spécifique et ce vivier de connaissances offre aux spécialistes de différents domaines la possibilité de collaborer sur des solutions innovantes pour résoudre des problèmes techniques.
L’Institut bénéficie d’étroites relations de collaboration avec des acteurs de l’industrie et des institutions académiques. Alors que les forces complémentaires de nos partenaires apportent des éclairages et des approches innovantes aux défis techniques, nous développons nos départements de recherche en toute indépendance. Des investissements conjoints publics-privés et des projets de collaboration financent le travail.
Les installations de recherche, les plateformes de test et les laboratoires de pointe de SuperGrid Institute sur les sites de Villeurbanne et de Grenoble sont la clé du succès de nos départements de recherche.
Nos dernières publications scientifiques
Comparaison and assessment of implementation techniques for dynamics MMC type models
Modeling Modular Multilevel Converters requires a special attention due to the strong associations between the accuracy and the complexity of models on one hand and the accuracy and simulation speed on the other hand. This paper investigates different implementation techniques for MMC models and gives an overview about their development and rapidity.
Numerical modelling and influence of defects on space charges in epoxy resin under HVDC stresses
Space charge accumulation on High Voltage Direct Current Gas Insulated Substations can produce electrical field reinforcements in the insulation that need to be taken into account in the equipment design. The TSM (Thermal Step Method) is one of the experimental techniques allowing to determine space charge distributions in insulating materials. However localized defects (i.e. microvoids, delaminations etc) cannot usually be detected by this technique. A new numerical approach to study the influence of structural defects on Thermal Step Method currents is proposed. The method is based on a Finite Element numerical simulation allowing to simultaneously solve electrical and thermal equations. The effect of three different defects were studied. It results that ring defects, with diameters smaller than 0.4 mm, produce less than 10% of change on TSM current signals. This confirms the difficulty to detect small defects by this method. It was also observed that delaminations can produce variations in signal as high as 70%, and even generate signals of opposing sign from the case without defect.
Characteristics of creeping discharges along epoxy surface in fluoronitrile/co2 gas mixture under lightning impulse
This paper deals with creeping discharges propagating over solid insulator samples in presence of a fluoronitrile mixture consisting of 10% of fluoronitrile and 90% of CO2, under positive and negative standard lightning impulse voltages, in point-plane geometry. The solid samples used are disks made of filled epoxy resin used for real GIS insulators. The experimental results are compared with those obtained with SF6 at pressure ranging 0.1 to 0.3 MPa, while the pressure of fluoronitrile mixture is chosen to match an equivalent dielectric strength of SF6. Different characteristic parameters are investigated namely the maximum length of creeping discharges versus the gas/mixture pressure and voltage polarity. In SF6, two regimes of discharges that depend on the voltage polarity are evidenced. Under positive impulse, the mixture presents similar properties as SF6. However, under negative polarity the maximum discharge length in SF6 is much longer than in the fluoronitrile mixture.