Power Storage & Balancing
“Managing the wide-scale introduction of intermittent renewable energy sources into electricity transmission networks is essential for ensuring the stability and flexibility of the grid, especially in an HVDC context. Innovative, hybrid storage solutions will enable us to do this.”
Renaud Guillaume, Department Director – Power Storage & Balancing
To support the integration of renewable energies within the European electricity network, the Power Storage and Balancing department adapts and develops hydraulic storage solutions based on the use of pumped storage plant (PSP) technology.
Because wind and solar energy are highly variable, using them on a wide scale requires massive and reactive means of storage. Although hydraulic storage is a mature technology – today it represents 97% of electrical energy storage worldwide – it must be significantly adapted to meet the challenges of the energy transition.
We focus on adapting conventional or variable speed pump turbines and improving their hydraulic characteristics. We also study the hybridisation of PSPs with other means of storage, exploring the economics of ancillary services.
SuperGrid Institute’s hydraulic platform makes it possible for us to test every kind of reversible pump turbine in all four quadrants, gathering data on efficiency, cavitation and dynamic behaviour according to IEC 60193 standard requirements.
Another platform, HydroPHIL, simulates the performance of hydroelectric dams. It focuses on hydraulic transitions within the power grid and, more generally, on unsteady regimes associated with the operation of hydraulic turbines: power build-up, start-ups, shutdowns, etc.
Recent publications
Feasibility study and application of electric energy storage systems embedded in HVDC and STATCOM systems
The global acceleration of Energy Storage (ES) Systems integration, including batteries and supercapacitors, is transforming power systems. This brochure offers valuable insights into converter topologies, modeling, and the benefits and challenges of integrating ES in HVDC and STATCOM systems.
Present and Future of DC Circuit Breakers for HVDC Grids
The development of DC Circuit Breakers (dcCB) for high-voltage direct current (HVdc) transmission systems poses significant challenges. Discover the latest advancements aimed at achieving low loss, high power density, and affordability in mission-critical applications.
Assessment of two DC voltage droop options for small-signal stability in MMC-based multi-terminal DC grids
This paper addresses stability issues in multi-terminal HVDC grids with different control strategies for DC voltage regulation. Small-signal analysis compares the robustness of two control options, examining the impact of droop gain, control loop response time, and DC reactors. Findings are validated through EMT simulations.