High Voltage Substation Equipment
“In the High Voltage Substation Equipment research department, we respond to the constraints of DC networks whilst respecting the environment.”
Alain Girodet, Department Director – High Voltage Substation Equipment
We develop substation technologies to respond to the constraints of future DC networks as well as those of current AC networks. This includes using circuit breakers to clear fault currents from meshed DC networks, as well as developing interconnection nodes to transfer energy. Our circuit breaker technologies and protection strategies are designed to reduce the cost of infrastructure and preserve the stability and availability of the network.
Gas-insulated switchgear is essential to networks, yet it is currently highly dependent on sulphur hexafluoride gas (SF6) – at the top of the list of greenhouse gasses – as the insulating medium. We study, model and optimise alternatives for gas-insulated switchgear. In addition, we research and implement new solid and gas insulation systems to provide enhanced electrical performance and resilience whilst maintaining low environmental impact.
To validate performance, we rely on SuperGrid Institute’s dielectric and power test laboratories. The characterisation platform enables us to define insulating material properties.
Our research projects include:
Recent publications
SuperGrid Institute achieves first 50kV DC breaking by combining a superconducting fault current limiter with a circuit breaker
SuperGrid Institute validates its resistive superconducting fault current limiter technology combined with a mechanical circuit breaker for HVDC
DCforEU, FLAGCHIP & HYNET: SuperGrid Institute a major contributor in 3 new international projects!
SuperGrid Institute will be working with partners from across Europe to shape the future of transmission & distribution grids.
Feasibility study and application of electric energy storage systems embedded in HVDC and STATCOM systems
The global acceleration of Energy Storage (ES) Systems integration, including batteries and supercapacitors, is transforming power systems. This brochure offers valuable insights into converter topologies, modeling, and the benefits and challenges of integrating ES in HVDC and STATCOM systems.