Design considerations for the 2- phase cooling system of a 5 MW MVDC converter

2021-08-11T16:57:57+02:00October 11th, 2018|Electronique de puissance & convertisseurs, Publications|

This presentation will provide an update on our current project: designing a cooler for a high power (5 MW) MVDC converter for offshore wind turbines applications. A number of constraints are imposed, mainly related to a limited volume, environmental, safety and health regulations, and of course cooling performance. Indeed, as we presented last year (ATW 2017), the silicon carbide power semiconductors used in this converter should operate at a junction temperature lower than 100 °C for better efficiency.

Measurement and Analysis of SiC-MOSFET threshold voltage shift

2021-08-11T17:37:46+02:00October 4th, 2018|Conference, Electronique de puissance & convertisseurs|

Gate-oxide technology weakness is a main reliability issue of Silicon Carbide MOSFET transistors. The threshold voltage shift is a critical phenomenon that addresses the reliability of industrial power applications. It is important to have a better understanding of the phenomena implied in the gate threshold voltage shift. In this context, HTGB test is proposed and the resulting gate oxide stress is studied and discussed in this paper.

Repetitive short-circuit measurement on SiC MOSFET

2021-08-11T17:37:53+02:00September 7th, 2018|Conference, Electronique de puissance & convertisseurs|

Robustness study for the 1.7 kV SiC MOSFET is presented. After evaluation of the critical energy required for failure, devices were submitted to repetitive short-circuits conditions.

A 100 kW 1.2 kV 20 kHz DC-DC converter prototype based on the Dual Active Bridge topology

2021-08-11T16:59:08+02:00August 24th, 2018|Electronique de puissance & convertisseurs, Publications|

This article presents the design, the fabrication, and the test of an isolated DC-DC converter for renewable energy applications. The converter is based on the Dual Active Bridge topology and uses silicon carbide power semiconductors and a medium frequency transformer. The design process covers hardware ranging from the semiconductor die to the complete power converter. For the control, a rapid prototyping approach was used. The experimental validation of the 100 kW prototype is presented.

A High Current Switching test bench to estimate switching losses for power switches

2022-11-30T10:40:18+01:00July 27th, 2018|Electronique de puissance & convertisseurs|

Our High Current Switching test bench is now operational! This one is integrated to the Power switches characterization platform, which can be used to fully characterize power switches.

A High Current Switching test bench to estimate switching losses for power switches

2022-11-30T10:40:18+01:00July 27th, 2018|Electronique de puissance & convertisseurs|

Our High Current Switching test bench is now operational! This one is integrated to the Power switches characterization platform, which can be used to fully characterize power switches.

Go to Top