Michel MERMET-GUYENNET’s keynote speech at the 13th IEEE International Conference on Power Electronics and Drive Systems (PEDS 2019)

2021-08-11T17:37:37+02:00July 12th, 2019|Conference, Electronique de puissance & convertisseurs|

This Tuesday the 10th of July, Michel MERMET-GUYENNET presented a keynote speech at the 13th IEEE International Conference on Power Electronics and Drive Systems (PEDS 2019) in Toulouse, following the invitation of Bernado COGO from the Antoine de Saint Exupéry Institute of Technology (IRT Saint Exupéry). In his paper, Michel MERMET-GUYENNET presented power electronics technologies for MV and HV grids.

Case Study of Non-Isolated MMC DC-DC Converter in HVDC Grids

2021-08-11T16:54:28+02:00June 7th, 2019|Electronique de puissance & convertisseurs, Publications|

This article presents the topology for non-isolated MMC-based DC-DC converter. The initial design study illustrates that such DC/DC converter will have overall semiconductor count comparable to a MMC AC-DC (used with HVDC transmission) converter of similar rating. A full controller schematic is presented and operating principles are discussed.

Power electronic traction transformers in 25 kV / 50 Hz systems: Optimisation of DC/DC Isolated Converters with 3.3 kV SiC MOSFETs

2021-08-11T16:54:55+02:00May 9th, 2019|Electronique de puissance & convertisseurs, Publications|

In AC electric trains, power electronic traction transformers (PETT) are multilevel single phase AC/DC converters connected to the AC medium voltage overhead line. For indirect topologies, DC/DC isolated converters are key elements of PETTs. This paper shows a method to design such DC/DC converters, and several variants are considered. Finally, the comparison results, in the case of a 25 kV / 50 Hz power supply and 3.3 kV SiC MOSFETs, show that the variant with a resonant AC link, with only one controlled bridge and a switching frequency lower than the resonant frequency, offers the best efficiency at rated power for a given volume.

Packaging Solution for SiC Power Modules with a Fail-to-Short Capability

2021-08-11T16:55:16+02:00March 16th, 2019|Electronique de puissance & convertisseurs, Publications|

Fail-to-short packages, which can still carry current after the failure of their semiconductor devices, are required for HVDC applications. However, all existing solutions are dedicated to silicon components. Here, a fail-to-short package is proposed for SiC devices. Its manufacturing process is described. 4 modules are built and submitted to intense short circuit currents (up to 2000 A). It is found that they offer a stable short-circuit failure mode, providing that the modules are mechanically clamped to prevent separation during the surge current test.

Study of the impact of DC-DC converters on the protection strategy of HVDC grids

2021-08-11T16:55:54+02:00February 7th, 2019|Electronique de puissance & convertisseurs, Publications|

This paper studies the role of DC-DC converters in the protection of HVDC grids acting as firewalls to stop the propagation of faults. The effects of blocking the converter or actively controlling its operation during faults are presented.The results demonstrate the capabilities of DC-DC converters beyond DC voltage transformation.

25 kV-50 Hz railway power supply system emulation for Power-Hardware-in-the-Loop testings

2021-08-11T16:56:14+02:00January 8th, 2019|Electronique de puissance & convertisseurs, Publications|

This paper presents a methodology to consider the impedance of a grid in power hardware in the loop (PHIL) experiments to validate power converter control in presence of harmonics or resonances in the network impedance. As the phenomena to emulate are in a large frequency range, the skin effect in conductors has to be taken into account. A procedure is developed to model the network.

Go to Top