A New Energy Management Control of Modular Multilevel Converters for Coping with Voltage Stress on Sub-Modules

2023-01-31T13:26:55+01:00April 24th, 2019|Appareillage électrique haute tension, Publications|

This paper investigates the impact of the operating condition on the SM voltage ripples. In particular, it is revealed that under the classical control scheme where the Modular Multilevel Converter internal energy varies naturally with the DC grid voltage, the traditional sizing approach based on the analytical expression of instantaneous SM voltage may fail to respect the SM voltage constraint. To tackle this problem, this paper presents a solution by incorporating the advantages of the explicit energy management and the developed analytical expressions of the SM voltage ripple, which achieves a better utilization of the converter asset.

Study of Turn-to-Turn Electrical Breakdown for Superconducting Fault Current Limiter Applications

2021-08-11T16:57:02+02:00November 2nd, 2018|Appareillage électrique haute tension, Publications|

The rational insulation design of a resistive superconducting fault current limiter (r-SCFCL) requires data gathered from experimental setups representative of the final apparatus. Therefore, an experimental study was performed to characterize the electrical breakdown (BD) of liquid nitrogen (LN2) in the peculiar conditions of a quenching superconducting device.

PhD Etienne OUSS “Characterization of Partial Discharges and Defect Identification in High-Voltage Direct Current GIS”

2021-08-11T17:42:53+02:00September 25th, 2018|Appareillage électrique haute tension, Phd, Tout|

This thesis aimed to characterize partial discharges in DC gas-insulated substations, and to develop an automatic defect identification tool. The first step of this work was the development of a partial discharge measuring bench. The complete study has been performed in a GIS section, so that the results can be directly applied to industrial equipment.

Models of AC and DC cable systems for technical and economic evaluation of offshore wind farm connection

2021-08-11T16:58:23+02:00September 3rd, 2018|Appareillage électrique haute tension, Publications, Systèmes de câbles haute tension|

Accurate cable modeling is a recurrent issue for electric architecture evaluation and design, especially in specific contexts, like offshore wind farms. This paper proposes optimal analytical cable models for the technical and economic assessment of offshore wind generation systems.

Virtual capacitor for DC grid stability enhancement

2021-08-11T16:58:33+02:00August 31st, 2018|Appareillage électrique haute tension, Architecture & systèmes du supergrid, Publications|

With a growing number of commercial installations around the world, HVDC technology increased its presence and importance in the power systems. Among various converter topologies, the Modular Multilevel Converters (MMCs) are considered as the most suitable one for HVDC application today. Besides its recognised advantages over conventional converters, the MMC has an interesting extra degree of freedom, which is the energy stored in the distributed cell capacitors. Although the amount of this energy is relatively small, it can provide a significant contribution to the DC system stability when properly used. This paper presents experiment results that demonstrate the effectiveness of virtual capacitor control. This control, previously proposed by the authors, makes use of the above additional degree of freedom to attenuate fluctuations of the DC voltage, which tend to be inherently volatile against power disturbances compared to the frequency of conventional AC systems. Under the virtual capacitor control, the MMC behaves as if there were a capacitor on the DC side of the converter whose size is easily adjusted by the control variable and can be even bigger than the physical capacitor actually embedded in the converter. In practice, the emulation of the capacitor dynamics is realised by the auxiliary control which adjusts the exchange of the energy between the stacked cell capacitors and the DC grid during the transient. Thus, no adverse effect is imposed on the AC grid. Furthermore, the system operator can optionally adjust the equivalent capacitance of the system to achieve desired mitigation level of DC voltage fluctuation during the operation. Therefore, this additional degree of freedom can largely extend the operability of the DC systems. The feasibility and effectiveness of the virtual capacitor control is demonstrated by experimental results obtained by using a small-scale MMC prototype.

Space Charge Measurements for HVDC GIS Spacer using the Thermal Step Method

2021-08-11T16:58:41+02:00August 31st, 2018|Appareillage électrique haute tension, Publications|

High voltage direct current (HVDC) technologies are currently emerging to develop new energy transmission networks able to integrate renewable energy sources with remote locations from consumers. Gas Insulated Substations (GIS) have been widely used in alternating current (AC) transmission due to their low footprint and high reliability.

Uncertainty Quantification for the Eulerian-Lagrangian simulation of evaporating sprays

2021-08-11T16:59:31+02:00July 26th, 2018|Appareillage électrique haute tension, Publications|

Evaporating sprays can be almost routinely simulated using an Eulerian-Lagrangian approach which relies on a RANS modeling of the continuous phase and a Lagrangian description of the discrete phase, including a turbulent dispersion model to express the effect of turbulent fluctuations within the carrier phase on the spray particles and an evaporation model for the spray droplets.

Go to Top