Nos actualités
DC Voltage Control of MMC-based HVDC grid with Virtual Capacitor Control
Ensuring that the DC voltage remains within an acceptable range is a major concern for HVDC systems.
Virtual Capacitor Control: Mitigation of DC Voltage Fluctuations in MMC-based HVDC Systems
The Modular Multilevel Converters (MMCs) have emerged as the most suitable converter technology for HVDC application.
SFCL‑based full-selective protection strategy for multi-terminal HVDC grids: A case study
A protection strategy for high voltage direct current grids using superconducting fault current limiters as main protection component is presented in this work.
A protection strategy for multi-terminal hvdc grids based on mechanical dc circuit breakers
A protection strategy for multi-terminal HVDC (MTDC) grids based on AC/DC converters without fault blocking capability such as half-bridge MMC converters is presented in this paper.
Phd Ahmed ZAMA “Modeling and Control of Modular Multilevel Converters (MMCs) for HVDC applications”
Common understanding today is that the challenges to develop the SuperGrid are huge at many levels (e.g.: political, societal, economical, financial, scientific, technical…). It is also commonly accepted that the SuperGrid will require novel technologies (breakers, cables, converters…) and operating principles (e.g.: transition from a more passive essentially AC-based power system to a more active AC/DC-based one). This thesis deals with the development of a key actor for SuperGrid technology, that is, AC/DC converters.
Phd Ahmed ZAMA “Modeling and Control of Modular Multilevel Converters (MMCs) for HVDC applications”
Common understanding today is that the challenges to develop the SuperGrid are huge at many levels (e.g.: political, societal, economical, financial, scientific, technical…). It is also commonly accepted that the SuperGrid will require novel technologies (breakers, cables, converters…) and operating principles (e.g.: transition from a more passive essentially AC-based power system to a more active AC/DC-based one). This thesis deals with the development of a key actor for SuperGrid technology, that is, AC/DC converters.
Protruding Ceramic Substrates for High-Voltage Packaging of Wide-Bandgap Semiconductors
With the development of wide bandgap semiconductors, voltage ratings of 10kV and more become realistic. As a consequence, it is now mandatory to propose a suitable packaging. Ceramic-metal substrates are an established technology for voltages up to 3.3kV, but they exhibit some weaknesses for higher voltages.
SiC power devices packaging with a short-circuit failure mode capability
The failure mode of press-pack-type packages dedicated to SiC devices is experimentally analyzed in order to investigate their use for HVDC applications. Single SiC Schottky diode samples have been submitted to short-circuit conditions and continuous current flow test.
A multi-vendor protection strategy for HVDC grids based on low-speed DC circuit breakers
A protection strategy for Multi-terminal HVDC (MTDC) grids based on AC/DC converters without fault handling capability such as half-bridge MMC converters is presented in this paper. The key components of the proposed strategy consist of DC breakers located at each converter station DC side and at each transmission line (overhead line or cable) end, all of them based on low-speed mechanical DC breaker technology with no fault current limiting devices.
Modelling of a VSC-Based Multi-Terminal HVDC Network for Dynamic Stability Analysis
Self-commuted Voltage Source Converter (VSC) can significantly extend the flexibility and operability of HVDC system and be used to implement the concept of Multi-Terminal HVDC (MTDC) grid. In order to take full advantage of MTDC systems, its overall behavior must be characterized in quasi static and dynamic states.