Nos actualités
Phd Ragavendran RAMACHANDRAN “Control and Power Management of an Offshore Wind Power Plant with a Diode Rectifier based HVDC Transmission”
Energy Transition for a more sustainable world is now the priority in societies. Towards this objective, especially in Europe, the offshore wind energy development has been relatively rapid. For Offshore Wind Power Plants (OWPP) farther from the shore (50 km and beyond) Voltage Source Converter (VSC) based High Voltage DC (HVDC) Transmission has become the prominent solution. Replacement of the offshore VSC station by multiple Diode Rectifier Units (DRUs) led to a cheaper, more compact and robust solution. This thesis focusses on various technological and scientific problems involved in the control system of the Offshore Wind power Plant with Diode Rectifier (DR) based HVDC transmission. These challenges are first reviewed in detail along with the state of the art. Then, based on the system dynamics, a grid forming control scheme is proposed by using the P-V and Q-f droop relationships, with a solution for the synchronization of the wind generators. Moreover, some of the selected control solutions in the literature for this topology are reviewed, compared and assessed by using time domain simulations of a study case. Following this, the different solutions for black start of the offshore AC system are analyzed from the available literature and they are compared using the relevant qualitative criteria. The various faults in the offshore system are then analyzed and the above designed grid forming control scheme is extended with Fault Ride through (FRT) capability, for offshore AC grid faults. Finally, a brief analysis is done on the challenges for the integration of this OWPP topology into a Multi Terminal DC (MTDC) network.
Phd Juan PAEZ “HVDC Converters for the interconnection of HVDC grids”
In order to include large-scale renewable sources into the electrical system and to transport high amounts of energy through long distances, the actual AC grid must be upgraded. HVDC transmission grids appear as a promising solution to upgrade the system and answer correctly the future needs and requirements. The development of such grids can be done following two different approaches. For one side, a DC system designed totally from zero following a standardization of HVDC technology, and for the other side, an incremental evolution using the existing HVDC lines. The second approach seems more reasonable due to the reutilization of infrastructure, the inconvenient is that the technology used on each existing line is different. Thus, their interconnection will require DC¬DC converters as interface elements. These structures allow the interconnection of different HVDC schemes and offer more functionalities than only DC voltage adaptation like power flow control and protection.
Phd Thibaut LEFORT “Epoxy/ionic liquid networks with and without anhydride: study of polymerization mechanisms and dielectric properties”
Thursday 12/12/2019, Thibaut Lefort has obtained the title of Doctor of Materials of Lyon university after a high quality viva. Hence, the thesis jury has strongly encouraged him to candidate for a Ph.D award granted by INSA in the energy category.
Phd Thibaut LEFORT “Epoxy/ionic liquid networks with and without anhydride: study of polymerization mechanisms and dielectric properties”
Thursday 12/12/2019, Thibaut Lefort has obtained the title of Doctor of Materials of Lyon university after a high quality viva. Hence, the thesis jury has strongly encouraged him to candidate for a Ph.D award granted by INSA in the energy category.
SuperGrid Institute is working towards the EU’s 32% renewable energy goal by contributing to XFLEX HYDRO
The XFLEX HYDRO project was launched today, the 10th of December, during the United Nations climate change conference (COP25) in Madrid, Spain. This major project, led by a consortium of 19 members, will play an important role in helping the EU reach its target of producing 32% of its energy from renewable resources by 2030, by demonstrating how innovative hydropower technologies can ensure the safety and flexibility of the power system.
SuperGrid Institute is working towards the EU’s 32% renewable energy goal by contributing to XFLEX HYDRO
The XFLEX HYDRO project was launched today, the 10th of December, during the United Nations climate change conference (COP25) in Madrid, Spain. This major project, led by a consortium of 19 members, will play an important role in helping the EU reach its target of producing 32% of its energy from renewable resources by 2030, by demonstrating how innovative hydropower technologies can ensure the safety and flexibility of the power system.
SuperGrid Institute’s “turbine type” readiness conclusions
How can we reduce the “S-Shaped” characteristics (stability) of a hydraulic turbine while maintaining its high performance? This spring, SuperGrid Institute completed several months of testing on different turbine designs for Pumped Storage Power Plants (PSPP). This promising and extensive research, which aims to improve power network services (supply security, flexibility, efficiency, etc.), has helped us better understand the physical phenomena and water flow that take place within turbines. It has also enabled us to corroborate our Computational Fluid Dynamics (CFD) simulation tools. A patent application was filed in September 2019 on this new technology.
SuperGrid Institute’s “turbine type” readiness conclusions
How can we reduce the “S-Shaped” characteristics (stability) of a hydraulic turbine while maintaining its high performance? This spring, SuperGrid Institute completed several months of testing on different turbine designs for Pumped Storage Power Plants (PSPP). This promising and extensive research, which aims to improve power network services (supply security, flexibility, efficiency, etc.), has helped us better understand the physical phenomena and water flow that take place within turbines. It has also enabled us to corroborate our Computational Fluid Dynamics (CFD) simulation tools. A patent application was filed in September 2019 on this new technology.
A DC voltage source for long term GIS testing designed by SuperGrid Institute
As part of its research, SuperGrid Institute studies the phenomena of partial discharge under DC voltage. Environmental issues emphasised in the European project PROMOTioN encourage the exploration for possible replacement of SF6 gas and remains a strong component of the study at SuperGrid Institute.
Françoise Lamnabhi-Lagarrigue has been awarded the Irène Joliot-Curie 2019 Prize in the Female Scientist of the Year category
Françoise Lamnabhi-Lagarrigue has been awarded the Irène Joliot-Curie 2019 Prize in the Female Scientist of the Year category. Congratulations to Françoise for this acclaimed recognition of her work!