Actualités2023-10-10T13:26:46+02:00

Nos actualités

SuperGrid Institute’s “Technical days”: an event dedicated to our industrial shareholders

SuperGrid Institute has held its first ever ‘Technical days’ event! Dedicated to our industrial shareholders, this event was organised to facilitate exchange and to allow us to better adapt our roadmap to the industry’s tangible needs. These two exciting days of workshops, discussions and networking have bolstered our belief in the importance of our mission to shape tomorrow’s HV & MV power transmission grids.

November 22nd, 2019|Evenement|

Design and validation tests of 320kV HVDC GIL/GIS

This paper gives an overview of electrical DC phenomena in GIL/GIS, the influence of insulating properties of SF6 and filled epoxy resin, and design of new support insulator for 320kV HVDC GIL/GIS. The busbar system including the insulator was designed not only to satisfy all standard requirements such as mechanical, temperature rise, heating cycle performance but also particular requirements for HVDC applications such as superimposed impulse tests. Finally and for the first time at actual scale, type test according to CIGRE JWG D1/B3.57 was conducted in EDF R&D Les Renardières laboratory to verify the design and insulating performance of the 320kV HVDC GIL/GIS system. The satisfactory results allow to confirm the high technology readiness level of HVDC GIL/GIS.

November 21st, 2019|High Voltage Substation Equipment, Publications|

Phd Raphael CHASSAGNOUX “Dielectric study of liquid and boiling nitrogen – Application to a superconducting fault current limiter”

The increasing number of interconnections in electrical networks and the massive integration of renewable energies nowadays comes with an increase of short circuit currents, and more constraints on high voltage circuit breaker during the current clearance. To solve this problem, a solution consists in inserting a fault current limiting device on electrical lines. Among the available technologies, the superconducting fault current limiter is ideal from the perspective of transmission system operator. However the design of this device is non-trivial, especially the electrical insulation, which is very specific to this apparatus: electrical insulation in a cryogenic environment (liquid nitrogen at - 196°C), superconducting tapes inducing electric field reinforcement, and strong transient heating generating numerous vapor bubbles.

November 14th, 2019|High Voltage Substation Equipment, Phd|

Phd Raphael CHASSAGNOUX “Dielectric study of liquid and boiling nitrogen – Application to a superconducting fault current limiter”

The increasing number of interconnections in electrical networks and the massive integration of renewable energies nowadays comes with an increase of short circuit currents, and more constraints on high voltage circuit breaker during the current clearance. To solve this problem, a solution consists in inserting a fault current limiting device on electrical lines. Among the available technologies, the superconducting fault current limiter is ideal from the perspective of transmission system operator. However the design of this device is non-trivial, especially the electrical insulation, which is very specific to this apparatus: electrical insulation in a cryogenic environment (liquid nitrogen at - 196°C), superconducting tapes inducing electric field reinforcement, and strong transient heating generating numerous vapor bubbles.

November 14th, 2019|Appareillage électrique haute tension, Phd|

Phd Alexis FOUINEAU “Medium Frequency Transformers design methodologies for high voltage grids and railway grids”

Medium Frequency Transformers (MFT) are an innovative technology compared to low frequency transformers, with the promise of reduced volume and increased efficiency. This PhD thesis focuses in particular on their design for high voltage, high power applications, such as high voltage and medium voltage DC networks, as well as railway networks. In these applications, MFTs are used in converters that can generate specific constraints to be taken into account during their design: non-sinusoidal signals, polarization voltage, target inductance values.

November 13th, 2019|High Voltage Substation Equipment, Phd|

Phd Alexis FOUINEAU “Medium Frequency Transformers design methodologies for high voltage grids and railway grids”

Medium Frequency Transformers (MFT) are an innovative technology compared to low frequency transformers, with the promise of reduced volume and increased efficiency. This PhD thesis focuses in particular on their design for high voltage, high power applications, such as high voltage and medium voltage DC networks, as well as railway networks. In these applications, MFTs are used in converters that can generate specific constraints to be taken into account during their design: non-sinusoidal signals, polarization voltage, target inductance values.

November 13th, 2019|Appareillage électrique haute tension, Phd|

The renewables integration via HVDC grids

The large-scale integration of renewable electricity generation poses both structural, economic and management challenges. Among the major challenges, one can note the grid integration and the routing of this energy from the production units to the consumption poles. Major issues have to be faced like insufficient transmission capability, inertia reduction, stability margins mitigation. The HVDC is not a new idea but it can provide some interesting answers to these challenges. The keynote will list the locks and how they can be addressed by the HVDC grid. Finally, the underlying scientific issues will be discussed.

October 24th, 2019|Architecture & systèmes du supergrid|

Phd Guilherme DANTAS DE FREITAS “Development of a methodology for DC grid protection strategies comparison”

High Voltage Direct Current (HVDC) grids are considered a promising solution for problems faced by nowadays power system such as: lines congestion, integration of large amounts of renewable power and enhancement of AC system stability. Among the challenges in the deployment of a HVDC meshed grid, the protection of these grids is regarded as one of the most critical. The protection of HVDC grid is challenging not only because the swift transients and fault currents without zero-crossing, but also due to the impact a DC faults can have on the AC system. Several propositions for HVDC grids protection strategies can be found in literature....

October 18th, 2019|Architecture & systèmes du supergrid, Phd|

SuperGrid Institute at “Fête de la Science”: come and discover the electricity network of tomorrow

The thinking caps are on this week at SuperGrid Institute with the “Fête de la Science” event! Over the last few days the institute has welcomed four classes of high school students who learnt about the work that we do through fun, interactive activities. This Saturday afternoon, we are opening our doors to the public to round of the week in style! Come along and see us!

October 10th, 2019|Evenement|

SuperGrid Institute at “Fête de la Science”: come and discover the electricity network of tomorrow

The thinking caps are on this week at SuperGrid Institute with the “Fête de la Science” event! Over the last few days the institute has welcomed four classes of high school students who learnt about the work that we do through fun, interactive activities. This Saturday afternoon, we are opening our doors to the public to round of the week in style! Come along and see us!

October 10th, 2019|Evenement|
Go to Top